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Strongly nonlinear heat transport across a porous layer is studied using Howard’s 
(1963) variational method. The analysis explores a bifurcation property of 
Busse’s (1969) multi-a solution of this variational problem and complements the 
1972 study of Busse & Joseph by further restricting the fields which are allowed 
to compete for the maximum heat transported a t  a given temperature difference. 
The restriction arises, as in the case of infinite Prandtl number convection studied 
by Chan (1971), from letting a parameter tend to infinity from the outset; here, 
however, the parameter which is assumed infinitely large (the Prandtl-Darcy 
number) is actually seldom smaller than O( lo7). 

The theoretical bounding heat-transport curve is computed numerically. The 
maximizing Nusselt number (Nu) curve is given a t  first by a functional of the 
single-a solution; then this solution bifurcates and the Nusselt number functional 
is maximized for an interval of Rayleigh numbers (R)  by the two-a solution. The 
agreement between the numerical analysis and recent experiments is striking. 
The theoretical heat-transport curve is found to be continuously differentiable 
but has piecewise discontinuous second derivatives. 

The results of an asymptotic (R+oo) analysis following Chan (1971) are in 
qualitative agreement with the results of numerical analysis and give the 
asymptotic law Nu = 0-016R. This law is consistent with the result of the porous 
version of the well-known dimensional argument leading to the one-third power 
law for regular convection. The asymptotic results, however, do not appear to be 
in good quantitabive agreement with the numerical results. 

1. Introduction 
The objective of the bounding theory of turbulence is to provide bounds on 

average properties of statistically stationary turbulent flows. The average pro- 
perties are regarded as functionals of the turbulent velocity field which can be 
defined for more general vector fields. The bounds are derived by determining the 
extremum of the functional among a class of vector fields which includes all 
statistically stationary solutions of the basic equations of motion. By restricting 
the fields admitted into competition for the extremum to those which share with 
the solutions an ever greater number of properties, one can improve the bounds 
and bring them into ever closer correspondence with the observed values. 

Howard (1963), following earlier ideas of Malkus (1954 b),  was the first to use 

t Present address: The Mitre Corporation, McLean, Virginia 22101, U.S.A. 
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this approach when he derived upper bounds for the heat transport by convection 
in a fluid layer heated from below. 

Busse, in 1969, made an important contribution towards the solution of the 
problem posed by Howard. He suggested that the extremalizing solutions should 
have increasingly smaller ‘scales ’ introduced as the intensity of the turbulence 
increases. He called these solutions multi-a solutions and studied them by 
boundary -layer methods. The boundary -layer analysis of the multi-a solutions 
rested on a number of unproven assumptions. These assumptions are most easily 
examined in the context of porous convection (Busse & Joseph 1972, hereafter 
called BJ)  since this is possibly the simplest of natural configurations in which 
multi-a solutions occur. The analysis of porous convection allows one to charac- 
terize the multi-a solutions through ‘orthogonality ’ relations in which the wave- 
numbers play the role of eigenvalues, and to prove a number of results about the 
solution. Moreover, the simplicity of the problem of porous convection allowed 
for the first time the numerical calculation of the two-a solution by a Galerkin 
method. The analysis confirms the essential validity of the boundary-layer 
solutions. 

The boundary-layer analysis, however, is misleading in certain very important 
details of the solution. In  particular, the boundary-layer solutions lead to definite 
‘breaks’ in the slope of the heat-transport curve. The more exact analysis of BJ,  
and the analysis given here, indicates that the appearance of solutions with ever 
more wavenumbers is a bifurcation phenomenon : for a certain range of Rayleigh 
numbers the heat transported is maximized by a solution with N wavenwnbers. 
At a critical value of R, a new solution with N + 1 wavenumbers differing infini- 
tesimally from the N-wavenumber solution becomes possible and maximizes the 
heat transport. The bifurcation process implies that the bounding heat-transport 
curve is a smooth curve having breaks in curvature rather than slope (the 
bounding heat-transport curve is continuously differentiable with piecewise 
continuous second derivatives).? 

The results of the variational analysis given in BJ are in good agreement with 
experiments in a range of Rayleighnumbers up to about 1 ln2 ( - 2.5Rc). At higher 
Rayleigh numbers, however, the appearance of maximizing solutions with many 
wavenumbers drives the bounding heat-transport curve away from the observed 
data. 

Motivating the present study is the observation that the form of the flow of 
liquids in naturally permeable materials results through a balance of the Darcy 
resistance against externally imposed pressure gradients and body forces. I n  
other words, the inertial force terms in the momentum equation are negligible 
compared with the other terms. In  terms of dimensionless parameters for flows 
driven by temperature differences, this implies a limit of infinite Prandtl-Darcy 
number (B-l-t 00). As in the infinite Prandtl number problem of regular convec- 
tion which was treated recently by Chan (1971), the B-tO limit linearizes the 
momentum equation and allows one to formulate the variational problem for the 

t Bifurcation from conduction t o  convection is an exception in this regard. Here we 
have n break in slope. But all further bifurcations cause a jump in curvature of the heat- 
transport curve. 
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heat transport as an integral consequence of the heat equation with the momen- 
tum equation as a pointwise-valid differential-equation side constraint. 

It goes without saying that the constrained maximum problem will lead to 
smaller values of the heat transport. What is really noteworthy, however, is the 
degree to which the solutions of the constrained variational problem seem to 
correspond to the observed physics. The agreement between the bounding heat- 
transport curves and the ones which were observed by Combarnous & LeFur 
(1969), and more recently by Buretta & Berman (1973), is particularly striking. 
In  these experiments one observes a change in the slope of the heat-transport 
curve which is sometimes regarded, with insufficient evidence, as a ‘break’ in 
the slope of the heat-transport curve. Such qualitative changes in the shape of 
the heat-transport curve were first observed for the BBnard problem by Schmidt 
& Saunders (1938) and their significance was first recognized by Malkus (1954a). 
The same qualitative changes evidently are true for porous convection. Our exact 
numerical analysis of the constrained variational problem for the heat transport 
is in splendid agreement with Buretta & Berman’s (1973) observations for the 
entire range of Rayleigh numbers which we computed. In  particular, the point 
at which the two-a solution bifurcates from the single-cc solution is in good 
agreement with the observed changes in the shape of the heat-transport curve. 

Having made this case for agreement of theory with experiment we must 
caution that ‘upper bounds’ would be expected to coincide with the heat- 
transport curve only if the solutions of the Darcy-Oberbeck-Boussinesq equa- 
tions were to coincide with solutions of the Euler equations for the maximum 
value of the heat-transport functional. It should be possible to integrate the 
DOB equations for roll convection numerically and to compare these exact 
results with the results of the variational analysis given here. 

The basis for our exact numerical analysis is not really new, though it appears 
that this is the first successful direct numerical integration of the Euler equations 
for the bounding problem. The technique used here is a standard quasi-lineariza- 
tion of the governing Euler equations coupled with the use of Conte’s ortho- 
normalization method. 

2. Formulation of the variational problem 
The configuration to be considered is a horizontal porous layer of infinite 

extent filled with fluid and heated from below. The layer has thickness d and is 
bounded by two parallel plates. The upper plate is at  a constant temperature TI, 
the lower plate at  temperature T,. To obtain a dimensionless description of the 
problem, we shall use d,  d2/K,  T, - TI and K / d  as units of length, time, temperature 
and velocity, respectively. 

It will be convenient and sufficient for our purpose to start the analysis with 
the dimensionless version of the Darcy-Oberbeck-Boussinesq (DOB) equations 
as set down by Lapwood (1948). We have 

B(u, +u .Vu) +VP-kR(T - TI) +u = 0 

and Tt+u.VT-V’T = 0, (2.2a) 
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where divu = 0, u = u,i+u,j+u,k. ( 2 . 2 b )  

The boundary conditions are 

T = l ,  u,=0 a t  z = 0  

and T=O,  u 3 = 0  at z = 1 .  (2.2c) 

Since the Darcy constitutive assumption has replaced the Newtonian stress 
divergence V2u with a resistance proportional to a Darcy averaged velocity ( - u)  
in the last term of (2.1), we cannot impose boundary conditions on the tangential 
components of the velocity vector. 

The parameters of the problem (2.1 a)  are the Rayleigh number 

R = ygKd(T2-Tl)/~~ 

and the Prandtl-Darcy number 

B-1 = (V/K) (d,/K). 

The constants y, g, v and K are the coefficient of thermal expansion, the accelera- 
tion due to gravity, the kinematic viscosity and the Darcy permeability coeE- 
cient, respectively. The thermal diffusivity K is here the ratio of thermal conduc- 
tivity of the fluid-solid mixture to products of the specific heat and density of the 
fluid. 

The velocity u in (2 .2 )  is the Darcy seepage velocity and not the actual velocity 
in the pores. Therefore the terms involving u .Vu need not be correct. Indeed 
experiments dating back to 1901 (Forchheimer 1901; Ward 1964; Beavers & 
Sparrow 1969) all give a drag proportional to the square of the average velocity 
in rectilinear flow. It has been suggested (cf. Irmay 1958) that the vector correc- 
tion for weakly nonlinear porous flow should also take form in a quadratic drag 
proportional to u (u( .  

The analysis of B J  assumed the Lapwood form (2.1) of the DOB equation. 
The purpose of that analysis was to expose and develop the variational method in 
its simplest mathematical context. The parameter B did not enter the analysis 
of B J  because the term involving u . Vu in the energy identities integrates to zero. 
The results of BJ therefore hold for all B. 

The present analysis explores the consequences of assigning a particular value 
to B;  the physicalIy appropriate value B = 0 folIows from extraordinarily small 
values of the permeability coefficient K in porous material: in sand, K = O(10-8) 
cm2; in very porous fibre metals, K = O( cm2. When B = 0 then 

VP-LR(T-TI)+u = 0 ( 2 . 2 4  

is the appropriate form of the DOB equations independent of the form which is 
assumed for the nonlinear convection of Darcy’s law. The fact that B +- 0 for 
natural materials means that thermally driven motion in porous material will 
ordinarily be very slow motion. 

The goal of the following analysis is to obtain bounds on the heat transport by 
convection under statistically stationary conditions, i.e. we make the usual 
assumptions that the physically realized solutions of (2.1) and (2.2) are such that 
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their horizontal averages exist, are bounded, and are time-independent. Restrict- 
ing our attention from now on to such solutions, we shall indicate the horizontal 
average by an overbar, and layer average by angular brackets: 

and 

Thus, we can define the fluctuating temperature 

T" = T - F ,  

where T" = 0 at z =  0, l .  ( 2 . 3 ~ )  

Taking the horizontal average of (2.2 b) ,  we show tihat 

u, = 0. (2.3 b )  

Similarly, the horizontal average of (2.2a), using (2.2b) and (2.3b),  gives 

a- a- d2F 
Zu3T = - u,T" = - ax a x 2  - 

Integrating (2.4) and using boundary conditions ( 2 . 2 ~ )  and ( 2 . 3 ~ ~ )  we get 

The layer average of ( 2 . 5 )  gives 

where Nu is the Nusselt number. Combining (2.5) and (2.6) we get 

dF ~ - =U,T"-I-(U,T"). ax 

Multiplying (2.2 a )  by T * and averaging over the layer leads to 

(*$) = -(IVT"l2). 

(2.7) 

Substituting dTldz  from (2.7) into (2.8) we find that 

(u,T*)~ - (p) + (u,T*) = (I VT*I2). ( 2 . 9 ~ )  

We can take the scalar product of (2.1) with u, take its layer average and find that 

( 1 ~ 1 ~ )  = R(u,T) = R(u,T"). (2.9b) 

The analysis of BJ defines the extremum problem for all solenoidal velocity 
and temperature fluctuation fields u, and T* which satisfy the integral con- 
straints ( 2 . 9 ~ )  and (2.9b). 
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In  the present analysis we replace the integral side constraint (2.9 b)  with the 

V2~,--RV;T* = 0,  ( 2 . 9 ~ )  

where 0: = + a&, is the horizontal Laplace operator. Equation (2.9 c) can be 
obtained as the vertical component of the double curl of ( 2 . 2 4 .  We note that, 
since k . curlu = 0 and u is solenoidal, u is a purely poloidal field which can be 
obtained from a potential x according to the prescription 

(2.10) 

Given a scalar field ug we may find x and the other components of u from (2.10). 
To complete the preliminaries for the statement of the variational problem, it 

is convenient to introduce the following changes of scale: 

U ,  = b R b ,  T* = bR-$0, (2 .1la,  b)  

differential-equation side constraint 

u = - curl2 kx. 

where b is an arbitrary constant. Obviously we must have 

(we) = (U3T*)/b2 = F/b2. (2 .114  

Then ( 2 . 9 ~ )  and (2 .11)  combine to give 

(2.12 a)  

(2.12 b )  

where w and 0 vanish a t  the boundary, have a zero horizontal mean, satisfy the 
scaling constraint (2.11 c) and satisfy 

vZw-v:e = o (2.12c) 

in the layer. With RF = p, equation ( 2 . 1 2 ~ )  will a t  once be recognized as the 
variational functional of BJ, and (2.12 b)  obviously corresponds to Chan's 
functional for the fluid-layer case. 

Next we define a class H of admissible functions: 
- 

H = {w7e: v2W-v:e = 0, = e = 0 1 ~ = , , ~ ,  w = e = 01. 
Among the elements ( W , ~ ) E  H are those which also satisfy the scaling con- 
straint M :  

M = {w, 19: ( w e )  = P/b2 = ,uC/Rb2). 

Every statistically stationary solution is an element of H n M .  
We seek, therefore, to maximize P in (2.12b) for all those elements in H which 

also satisfy the condition M .  However, since F is a homogeneous functional of 
degree zero, we can always renormalize the elements (6, o), which maximize F 
in H ,  so as to satisfy the condition M .  Thus we may obtain a unique element 
(a, 8) in H n JV which maximizes F. Hence our problem is reduced to finding 
the maximum of 3' in (2.12 b)  for all elements in H .  
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Following Howard's arguments, it  can be shown that maximizing P in (2.12 b )  
for a given value of R is exactly equivalent to minimizing R in (2.12 a) for a given 
value of p ( = RP). As a matter of fact, both problems lead to exactly Che same 
Euler equations. 

So far we have treated b as an arbitrarily re-assigned scalar quantity. In  an 
alternative approach, however, we can first find an exbremalizing element (G,8) 
in H ,  and then calculate b from (2.11 c )  so that the normalizing condition N is 
automatically satisfied. 

3. Multi-a solutions 

(2.12 b )  can be shown to lead to the same Euler equations: 
Using the method of Lagrange multipliers, extremalizing either (2.12 a )  or 

1 1 
-v40+ 2+- v~w--~vyww~}+iJv~w]  = 0, 
RP 3 <we> 

(3.1 a) 

vZw-v;e = 0, (3.1 b )  

w = 0 = V 2 0 = 0  at  z = O , 1 ,  (3.1 c) 

where (3.1 d )  

Here V28 = 0 arises as a natural boundary condition, and it can be shown that 
1 < h < 2 .  

Equation (3.1 a )  is nonlinear, but the nonlinearity enters only through terms 
we which depend on z alone. These equations therefore admit separable solutions 
of the form (Busse 1969) 

N 

1 

N 

1 

W ( X ,  Y, 2) = E W n ( z )  $ n ( X ,  Y) 

and B ( X , Y , ~ )  = C . e n ( z ) $ n ( ~ , ~ ) ,  ( 3 . 2 ~ )  

where q 5 n ( ~ ,  y) are eigenfunctions of the horizontal Laplacian 

Vq5n = -ai$n (3.2b) 

and $n$m = dmn. 

Since W = 8 = 0 we must have a: + 0 for all n. Substituting (3.2) into (3.1), and 
writing 

(3.3) 

we get L;~, = p u : ~ n w n -  q ~ ~ ~ L n ~ w n w e ) + w e ~ n w n ~ ,  (3.4) 

where p = 2RP + Rh, (3.5) 

q = RF/(wO> = p/<we>, (3.6) 

L,W, = (02 - a:) wn = - a;en, D a p z ,  
- -  

and 

32 
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The boundary conditions become 
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w, = D ~ w ,  = D4w, = 0 at x = 0 , l .  (3.8) 

To extremalize the functioiials F or R in (2.12), we must also find the optimizing 
wavenumbers. For this we require that 

dR 1 dR 
d( i/a:) - aida;, 
___ - - - 0, 

where we have noted that the variation of R which is associated with the change 
in w, (call this 8,~tR)  vanishes whenever R is stationary. We find that 

+ RF[(wS)2 a a n a ( W e 2 )  - 2(G02) (w@ (- w,D2~,)]/(w8)* = 0, (3.9) 

and 

We are required, therefore, to solve (3.4) subject to the boundary conditions 
(3.8) and the wavenumber optimizing equations (3.9). 

A few comments are in order here regarding the role of the parameters p and q 
in (3.4)-(3.6). It is a t  once apparent that, if ( { w ~ } ,  {a;}; q )  is a solution of (3.4) for 
a given value of p ,  so is (a{w,}, {a:}; q/a2), where a is an arbitrary scaling para- 
meter. Thus, fixing q fixes the size of the solution (wn}, and this size plays the role 
of an 'eigenvalue' of the nonlinear two-point boundary-value problem (3.4) with 
(3.8). Thus p is the independent parameter in this problem. For a given value 
of p ,  we can choose any value of q, and solve (3.4) and (3.8), optimizing a; using 
(3.9). Having obtained the solution ({w,},{a;>; q) ,  p = RF may be calculated 
from (3.6). Then R may be calculated from (2.12a) and, hence, F = p / R  and 
Nu = 1 + F .  Thus, fixing p determines every other quantity of the problem. 

The solutions of (3.3), (3.4) and (3.8) are characterized by the following 
orthogonality relation : 

- (D8,D8,)+p(wnw,)- 2q (awnwl ) ]  = 0. (3.10) 

Toderive(3.IO)wefirstnotethat(3.8)and(3.3)showthat8, = D28, = L,B, = 0 
at z = 0, I. Then we form the relation 

(wl [equation (3.4)]) - (w, [equation (3.4) with n replaced by I]) = 0. (3.11) 
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After repeated integration by parts, using (3.3) and the boundary conditions, we 
find that 

+ 4(D&o@n> + Gaf(@tQ,), (3.12 a )  

(3.12b) (wt Lnwn) = - (Dwn Dwh- at(wlwn> 

and (wlLn(wnWe) + wtwBLnen) 

= (a; - a:) (wnwt ~ 8 )  - (We(af el W ,  + a: en wl)). (3.12 c)  

The orbhogonality condition (3.10) follows from (3.11) using (3.12a, b,c). 
The conditions (3.10) appear to have some features close to orthogonality con- 

ditions which are familiar from linear eigenvalue problems. In  particular, it is 
possible that (3.10) is associated with the fact that ‘eigensolutions’ of (3.4) 
belonging to a$ have nodal separation properties. Consistent with (3.10) we 
assumed that, when two-a solutions exist, the ‘eigenfunction’ belonging to a, is 
an even function and the ‘eigenfunction ’ belonging to a2 is an odd function. We 
then found numerically a1 eigenfunctions that had no nodes and the a2 eigen- 
functions Ohat had one node a t  x = 4. 

The conditions (3.10) differ from familiar orthogonality conditions in that 
(3.10) depend explicitly on the ‘eigenvalues ’ a, as well as on the ‘eigenfunctions ’. 
In  addition, for each finite R (or p )  there is only a finite number N < co of 
‘ eigenfunctions ’ . 

4. Heat transport when R is near R,. 
It is well known and easily shown that 

the minimum being obtained for 

wl(x) = sinm, a; = n2, O,(z) = (1 - P / a ; )  w1 = 2 sin TZ.  (4.1) 

Hence, whenever R < 4n2, F in (2.12b) will be negative for anynon-zero (w, O), 
b from ( 2 . 1 1 ~ )  will be imaginary, and hence (u,,T*) from (2.11a,b) will also be 
imaginary. Thus we must have us = T* = 0 = F ,  and statistically stationary 
convection with R < 4n2 is not possible. On the other hand, it is known from the 
linear theory of stability that steady convection commences when R > 4n2. 

32-2 
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Hence, 4n2 is a global limit of stability for the conduction solution of the DOB 
equation (Westbrook 1969). We note that. as R j, 4n2, b+O. Hence thesingle-a 
solution a,ppears first with an infinitesimal magnitude as a bifurcation of the zero 
solution at  the point of bifurcation R = p = 4n2. 

We mag also compute the slope of the heat-transport curve a t  R = 4n2 or 
p = 0. For any ,u 3 0, from ( 2 . 1 2 ~ )  we get 

aR ((We - (we))2) 
(w%)2 ’ 

where SR/S,u gives the variation of 

(4.2) 

with w and 8 when the third place variable is fixed. Since R is stationary with 
respect to variations in w and 8, and since atZ/a,u and a#/a,u belong to H ,  SR/G,u = 0. 
At ,u = 0 using (4.1) and (4.2) we get 

It was shown in B J  that there exists an exact solution of the DOB equations 
with B = 0 such that 

[dNu/dR],,,,s = 1127~~. 

Hence, the bounding heat-transport curve coincides with an exact solution in 
the immediate neighbourhood of R = 4n2. 

We have seen that the maximizing solution (4.1) for F has a single horizontal 
mode a t  R = p = 4n2. It is quite reasonable to assume that for a certain range 
4n2 < R < R,,, or equivalently 4n2 < p < p12, the extremalizing solution will 
still be characterized by one single horizontal mode. At R = R,, (or p = p, , ) ,  the 
single-a solution would bifurcate into a two-a solution. This assumption is eom- 
pletely consistent with theory as it is presently understood, and is supported by 
the numerical analysis of B J  and this investigation. I n  general, one expects 
repeated bifurcation of solutions with fl wavenumbers to solutions with N + 1 
wavenumbers as R (or p )  is increased. 

In  the next section we shall solve the single-a problem associated with (3.4) 
numerically for p > 4n2. 

5. Numerical computation of the single-a solution 
With N = 1, equations (3.4) and (3.8) define a sixth-order nonlinear differential 

equation with two-point boundary conditions. As indicated earlier in 8 3, for 
a given value ofp > 4nZ we can assign any value to q (thus fixing the ‘size ’ of the 
solution w,) and make a guess for the optimum value of a:. Knowing p, q and a:, 
we may solve the sixth-order two-point boundary-value problem by the well- 
known shooting method. In  general, however, the initially guessed value of a2, 
will not satisfy the wavenumber optimizing equation (3.9). To find a better value 
of a:, we use the computed solution w1 in (3.9) to form a polynomial (with known 
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coefficients) in the  variable a:. This polynomial is then solved for a new value 
of a:. Differential equation (3.4) is then solved again using this new value of a:, 
and the old values of p and q. This process is repeated again and again until the 
difference between two successive iterates of a: is tolerably small. Finally, 
knowing the solution (wl,a:,q), ,u = RF may be calculated from (3.6). Then R 
may be calculated from (2 .12a) ,  and the values F = p / R  and Nu = I + F follow 
immediately. 

To keep the number of a$-iterations small, it  is very important to estimate a 
starting value of a4 close to its optimizing value. For this purpose, results for the 
two lower values of p are extrapolated linearly to the new value of p on a log-log 
scale. To further speed up the convergence of &:-iterates, Aitken’s extrapolation 
procedure is used after every two a:-iterations. 

The numerical integration in the shooting method was performed using a 
Runge-Kutta method with a variable step size. The step size is repeatedly halved 
by the subroutine until a specified relative accuracy ( in results is obtained. 

The numerical computation of the solution w1 was facilitated by assuming 
that w1 is an even function of z - Q for 0 < z < I .  This is suggested by the sym- 
metry of equations (3.4), (3.8) and (4.1) about z = Q. This symmetry assumption 
implies that 

Dw, = D3w1 = D5w, = 0 at z = +. 

The whole problem can thus be solved in a half layer, reducing the required 
computer time by approximately one half. It was also found that the numerical 
integration of the problem is easier and more accurate when integrating from 
z = 0.5 to z = 1-0 (i.e. from centre of the channel to the boundary) rather than 
from z = 0 to x = 0.5. The explanation probably lies in the fact that the solution 
w, is better behaved at; the centre than at  the boundary. 

The shooting method worked quite well for low values of p .  However, for 
p > 300 the integration becomes quite sensitive to the initial condition; i.e. even 
a slight inaccuracy in the assumed initial conditions causes divergence in the 
process of their correction or causes the initial-value problem to become un- 
bounded before the integration can be carried through to t.he other end. 

To circumvent the difEculty encountered with the shooting method, the 
Newton-Kantorovitch or quasi-linearization technique (Bellman & Kalaba 
1965) was tried. This method gives good results for all values of p but becomes 
prohibitively expensive at  large values of p .  The basic idea behind the technique 
is to ‘linearize ’ the original nonlinear problem about a certain trial function, and 
then to ‘ iterate ’ on this linear problem until two consecutive iterates are essenti- 
ally the same and hence equal to the solution of the original nonlinear problem. 
For example, equation (3.4) for the single-a case may be written symbolically as 

D~w,  = f(wl, Dw,, D2w,, D3w1, D%,, D5w1). 

We can linearize this equation as follows: 

D 6 W 1  = (f 10 + (af/awl)o (w1- (Wl)O> + (af/a(Dwl))o P w 1 -  (DW1)Olf * * .  

+ (af/a(D5w1))o P 5 w 1  - (D5w1)ol, 
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where the subscript zero denotes the value of the expression inside the 
parentheses evaluated for some initial function ( w ~ ) ~ .  Thus, for example, a term 
like w: on the right-hand side of (3.4) would be linearized as 

4 = ( 3 ~ 2 , ) ~  ( ~ 1 -  (w1)3 + ( 4 0  = 3(74)$ (w1- ( w J d  + ( ~ 3 0 -  

Of course this scheme leaves the linear terms unchanged. The idea behind 
linearization is that a linear boundary-value problem can be solved easily by the 
superposition of its linearly independent sohtions in such a way that a11 boundary 
conditions are satisfied, while there is no such procedure for a nonlinear equation. 

Even though, theoretically, a linear differential equation can be solved by 
properly combining its linearly independent solutions, the procedure leads to 
completely incorrect results when applied as a numerical technique on high-speed 
computers with only limited accuracy. The basic problem is that one eigen- 
function of the differential operator grows much more rapidly than the others as 
the independent variable goes from one end to the other. As a result, regardless 
of their initial behaviour, all solutions of the equation become dependent on only 
the most rapidly growing eigenfunction and essentially independent of the slower 
growing ones. The problem and its solution are described in detail by Conte 
(19G6). Essentially the remedy lies in ortho-normalizing the independent 
solution-vectors as soon as any two of them become nearly parallel. No more 
need be said about this except that the ortho-normalizing matrix seems to have 
been printed wrongly in Conte’s paper. Its elements pd j  should be as follows: 

(i =j). 

Conte’s technique was found to work very well for our problem. 
In using the quasi-linear method of Newton-Kantorovitch, we must select 

a proper function as a first iterate. The solution w1 for a lower value of p is an 
appropriate choice for this purpose. However, we do not have to store the whole 
function into the computer memory. Instead we can regenerate this solution 
again and again as it is needed in the integration, provided we know the correct 
corresponding values of p ,  q and a!; and wl, Dzwl and D4w1 at z = +. 

Similarly, it is also convenient to keep regenerating the successive iterates of 
w1 in the Newton-Kantorovitch scheme as and when they are needed instead of 
storing them. This requires more computer time but less storage. More important, 
however, this method is more accurate and reliable. 

The computer programs used in these computations are listed in Gupta’s (1972) 
thesis. The results are given in table 1, which lists the corresponding values of 
p ,  q, a!:, wl($), D2wl(+), D4w1(i), R and F .  The solution wl(z) and q have been 
renormalized here in such a way that (w8) = (~181) = 1. This was done to keep 
some comparability between solutions belonging to different values of p .  Note 
that in this case ,u = RF = q. 

In  the next section we consider the two-a! problem and the associated 
bifurcation problem. 
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PIR 
39.47841760 
39.47841760 

49.18557724 

63.67971483 

76.54062831 

98.66969450 

100.0 

200.0 

300.0 

500.0 

750.0 
12 1.9495495 

1000~0 
142.2027274 

1500.0 
177.1649796 

2000.0 
207.4311736 

2250-0 
221.3422105 

2256.2 
221.6785859 

2262.5 
222.0199834 

2275.0 
222.6961617 

2300.0 
224.0437839 

2350.0 
228.7204270 

2400.0 
229.3728892 

2500.0 
234.6080840 

2750-0 
247.3188892 

3000.0 
259.5464347 

3250.0 
271.3458647 

3500.0 
282.7634663 

3600.0 
287.2322475 

3750.0 
293.837 1845 

4000.0 
304.6010670 

6000.0 
382.1326256 

8000.0 
449.0118706 

P ( =  P)lB 4 
0.0 9.869604401 
0.0 

20.878814872 10.054427750 
0.4244905935 - 

57.34602701 0 104943661 76 

96.961614503 12.033709850 

179.01345478 14.466012415 

285.54560674 17.320966008 

394.59169805 19.926778779 

617.14107958 24-590584521 

843.41616087 28.746376527 

957.52067541 30.694683255 

960.357 15800 30.741 746408 

963.23970333 30.789509965 

968.95996884 30.884104745 

980.40417414 31.072605842 

1003.3070204 31.446904099 

1026.2286305 31.817688810 

1072.1259537 32.549133065 

1187-1631345 34.326535653 

1302.5895596 36.073503057 

- 

0-9083901704 - 

1.266799302 - 

1.814269880 - 

2.341506040 - 

2.774853234 - 

3.483425906 - 

4.066004864 - 

4.325974125 - 

4.332205359 - 

4-338527048 - 

4.351040275 - 

4.375949009 - 

4.425304918 - 

4.474062450 - 

4.569859381 - 

4.8001 31 274 - 

5.01 87 14903 - 

5.227086329 - 

5.426457338 - 

5.503911028 - 

5-617812573 - 

5.802007899 - 

7.082714963 - 

8.1 381 92430 - 

1418.3482598 37.758964118 

1534,4038868 39.391241805 

1580.9007346 40.025529133 

1650.7222293 40.962832376 

1767-2977968 42.535567403 

2706.5364652 53.807628490 

3662.2447481 63.587200493 

Wl(i) 

1.0 

0.99255669288 

0.99399315060 

1.0008563972 

1.0137460926 

1*0239518708 

1.0301 043655 

1,0366244674 

1.0395347384 

1 e0403260346 

1.040341 1286 

1.0403562704 

1.0403857367 

1.04044241 73 

1.040547 1469 

1.0408410462 

1.0407993108 

1-0410563469 

1.0412029429 

1.0412234433 

1.041 1531419 

1-0411007620 

1.04 1005 1277 

1.04084151 75 

1.0386195404 

1.035017418 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

D2W1(&) 

- 9.869604401 
- 

- 8.891838926 
- 

- 7.701654079 
- 

- 6'802244467 
- 

- 5.539809288 
- 

- 4.565352893 
- 

- 3.935745154 
- 

- 3.140972601 
- 

- 2'632170779 
- 

- 2.434617306 
- 

- 2.430099349 
- 

- 2'425525724 
- 

- 2.416501972 
- 

- 2.398654550 
- 

- 2.363737051 
- 

- 2.329814369 
- 

- 2'264768946 
- 

- 2.116402130 
- 

- 1.983027383 
- 

- 1.864285408 
- 

- 1'757669345 
- 

- 1.718257260 
- 

- 1.661996345 
- 

- 1'572854516 
- 

- 1.077729476 
- 

- 0.791276781 
- 

D4wwl(i)  

97.40909103 

12.337596275 

- 82,381978702 

- 

- 

- 

- 140.81112198 
- 

- 192.79428548 
- 

- 204,35134029 
- 

- 199'62187657 
- 

- 185.38867797 
- 

- 174.27566624 
__ 

- 169.69031834 
- 

- 169.58238429 
- 

- 169.47296719 
- 

- 169.25683154 
- 

- 168.82694772 
- 

- 167'97913027 
- 

- 167.14598796 
- 

- 165.52051789 
- 

- 161.66116365 
- 

- 158.01258614 
- 

- 154.54511000 
- 

- 151.22745834 
- 

- 149.94263076 
- 

- 148.05297673 
- 

- 144.94304341 
- 

- 123'38142754 
- 

- 106.1273086 
- 

TABLE 1. Values of the parameters for the single-cx solution 
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6. Numerical computation of the two-a solution 
When N = 2 we get two Euler differential equations from (3.4) with n = 1 and 

n = 2. We shall denote the corresponding solutions by w \ ~ ] ( z , ~ )  and wh21(z,p). 
The superscripts have been added to differentiate this solution from the single-a 
solution. However, we simplify the notation by suppressing the superscripts 
where the context makes it clear. 

The two-a problem is governed by a twelfth-order differential equation system 
instead of the sixth-order system which governs the single-a case. We shall 
assume again that WYI is an even function of z - 6, and that wL21 is an odd function. 
These symmetry properties prevail in the problem treated by BJ, and they 
reduce the orbhogonality condition (3.10) to an identity. These assumptions 
imply that 

(6.1) i 
Dw, = D3w, = D5w, = 0 

w, = D2w2 = D4w2 = 0 

wi = D2wi = D4wi = 0 at z = 1 for i = 1,2.  

at z = Q, 
a t  x = t ,  

We can treat this two-a problem using the Newton-Kantorovich scheme (with 
Conte’s ortho-normalizations) in exactly the same way as in the single-a problem. 
In the latter case, however, we knew the analytical solution (4.1) for p = 41~2, 
which we were able to use as a first iterate in the computation of the single-a 
solution at  a higher value o f p .  The corresponding information in the two-a case 
can be obtained from our assumption that at  a critical value p = p,, the single-a 
solution bifurcates into a two-a solution. When p is above p12 but close to it, the 
second mode wF1 is expected to be small compared with the first mode. Hence 
wZ6, may be neglected in comparison with wlB1. Equation (3.4) with n = 1 then 
reduces to the Euler equation for the single-a case, whose solution we already 
know. Equation (3.4) for $he second mode, however, reduces to 

(6.2) L:w, = 4 PLZW, - qa;[J5,(w, dlW2)  + w1@, L,W,l, 

subject to the boundary conditioiis (6.1). This defines a linear eigenvalue problem 
for w2 with eigenvalue A = a;. Knowing p > p12,  q and 6he corresponding w,, we 
may solve this eigenvalue problem for a non-trivial solution wg and the eigen- 
value A. No such solution is expected to exist for p < p12. The results of this linear 
eigenvalue problem are listed in table 2. It is a t  once clear that p12 lies between 
2250 and 2265. Corresponding values of R from the single-a solution are 221.34 
and 222-02. More accurate information about the bifurcation point can be 
obtained from backward extrapolation of the two-a results obtained later. This 
extrapolation gives 

pl ,  2252.5, R,, 221.5, A = O$ : 111.7 

a t  the point of bifurcation. 
The solution w, of the linear eigenvalue problem (for p = 2262.5) is shown in 

figure 1. Note that no scale is shown on the y axis since w2 is the solution of a 
homogeneous linear problem. 



Bounds for heat transport in a porous layer 505 

P 
3500.0 
3250.0 
3000.0 
2750.0 
2500.0 
2250.0 

2400.0 
2350.0 
2300.0 
2275.0 
2262.5 

A 
76-112 
76.550 
77.628 
79.862 
85.053 

No solution 

89.141 
92.284 
97.189 

101.393 
104.995 

TABLE 2. Variation of the eigenvalue parameters for the eigenvalue problem (6.2) 
for the point of bifurcation of the single-a solution 

w2 4 

0 5 0.6 0.7 nb: 0.9 1.0 

z 

FIGURE 1. The second-mode eigenfunction at the point of bifurcation, p = p12. 

Results of this linear eigenvalue problem can now be used in the solution of the 
two-a problem. For a value of p close to pI2 ,  we can use (as the first iterates in the 
Newton-Kantorovich scheme) the singlea solution for the first mode and the 
solution o f  (6.2) for the second mode. The first iterate of the second mode must, 
however, be ‘suitably’ scaled. If we scale it too small, the Newton-Kantorovich 
scheme makes the second mode converge to zero and the first mode converge to 
the single-a solution. This combination is always a solution to the governing 
equations. On the other hand, if we scale it too large, the Newton-Kantorovitch 
scheme converges to the correct two-a solution but very slowly. The suitable 
scaling range is found by triaI and error. 

Once, however, the correct two-a solution is known for a particular value o f p  
(say 2265) this solution can be used as a first iterate for a higher value of p ,  pro- 
vided, of course, that the difference between the two values of p is not too large. 
Thus we can construct the whole two-a solution for any desired range o f p .  As in 
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P 
R 
- 

2265.0 
222.1647457 

2282.5 
223.1225654 

2300.0 
224-074941 1 

2325.0 
225.4254949 

2350.0 
226.7653565 

2400.0 
229.4139867 

2500.0 
234.5958494 

2600.0 
239.6381727 

2750.0 
246.9700227 

3000.0 
258.6576269 

3500.0 
280.4332149 

4000.0 
300.5483475 

4500.0 
319.3678432 

5000.0 
337.1314852 

5500.0 
354.0094259 

6000.0 
370.1284237 

7000.0 

8000.0 

400.4596743 

428.697 1667 

- 4 
4 g/ (F = Nu-1) 

964.46784585 30.501 3 13092 
4.341228141 111.82578231 

972.60289889 30.212534479 
4.359052152 111.96693667 

980.74008941 29.923520099 
4.376839663 112.10899682 

992.36147 131 29-554176294 
4.402170533 112.36290984 

1003.9852958 29.196455622 
4.427419211 112.61435690 

1027.2370986 ' 28.536321615 
4.477656805 113.16015395 

1073.7626927 27.399330385 
4.577074555 114.38891755 

1120.3241882 26.454278378 
4.675065645 115.76230080 

1190.2430899 25.302140950 
4.819382843 118.01939079 

1306.9899059 23.878627150 
5.052972617 122.13773970 

1541.2861835 22.066281735 
5.496089984 131.26354461 

1776.5356007 20.999115599 
5.910981097 140.82009387 

2012.6078857 20.344480854 
6.301848881 150.75679800 

2249.3871456 19.934284453 
6.672136079 160.89359964 

2486.7822474 19.695045404 
7.024621566 171.24425401 

2724-7 164690 19.5423 17355 
7.361543438 181.65563346 

3201.9474209 19.450410967 
7.995680031 202.36368214 

3680.7 162305 19.53 1542024 
8.585818887 223.15601452 

TABLE 3. Values of the para 

%(6)  D"wl(B) 
DW,(S) D3w,( 4) 

1.0390844210 -2.483129703 
0-18338160417 6.1259590055 

1.0373267924 - 2.553231984 
0.28452569235 7.9774400581 

1.0355604516 - 2'622450990 
0.35694833314 10.038947066 

1.0331979058 - 2.712363379 
0.43399577140 12.270803658 

1'0308723887 - 2'798626993 
0.49660073111 14.114163550 

1.0264273933 - 2.9571 11599 
0.59456373047 17.086955148 

1.0182816132 - 3.226999519 
0.73094257083 21.523157712 

1~0110065361 - 3.447063776 
0.82404670606 24.914725854 

1-0014663481 - 3.707724235 
0.91882195028 28.978139504 

0.98853173636 - 4.013261058 
1.0097875531 34.284488799 

0.97016325656 - 4'353226392 
1.0716548027 42.322355212 

0.95818482380 - 4609549675 
1.0632327285 48.396482556 

0.95028441144 - 4672500069 
1.0220546340 53.141851611 

0.94501362865 - 4.585799593 
0.96586342949 56.777861239 

0.94163305358 - 4.568894646 
0.90228782413 59.439363190 

0.93932775379 - 4537932510 
0.83752850944 61.266756403 

0'93708969928 - 4.453043056 
0.71428953055 62.816869103 

0.93676393680 - 4.354999472 
0-60336883235 62.235748310 

imeters for the  two-ct solution 

D4%(4) 
D52C.,(i) 

- 170.05641 634 
- 238'82244201 

- 170.61165572 
- 375.30264212 

- 171.12564396 
- 47641928363 

- 171.74132448 
- 588.96436759 

- 172'27866236 
- 684.2828581 1 

- 173.13448727 
- 842'28168094 

- 174.22463104 
- 1084.5799567 

- 174.80888809 
- 1268.7144504 

- 175.22759778 
- 1475.6711277 

- 175.55364482 
- 1695.3548808 

- 176.4540582 
- 1831.0096582 

- 177.85006864 
- 1706.2835227 

- 179.48796931 
- 1393.1760262 

- 181.01567968 
- 949.63922892 

- 182.33362119 
- 41 1.20590671 

- 183.23393184 
178.32130156 

- 184.1422461 
1398.39473371 

- 184.12986213 
2576.600441 12 

the single-a case, we do not store any solutions into the computer memory. It is 
more convenient, reliable and accurate t o  regenerate any required solution from 
its known initial values. 

The various two-a results are listed in table 3. Here, as in the single-a case, the 
results have been renormalized such that (we) = (w,O, + w28,) = 1. The com- 
puter programs used in these computations are listed in Gupta's thesis. 
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R 

FIGURE 2. Comparison of the numerically computed bounding heat-transport curve with 
the experiments of Buretta & Berman (1973). - -, continuation of the single-cc solution past 
the point of bifurcation. 

7. The heat-transport curve : comparison of theory and experiment 
A very well established feature of thermal convection in a pure fluid layer which 

was discovered by Malkus (1954a) is tha t  the heat flux Nu(R) varies in linear 
segments with R. It is natural to identify the points of transition between the 
‘straight line’ segments as points where the nature of convection changes. 
Krishnamurti ( 1970 a, b )  has carefully examined this transition phenomenon 
anew and essentially confirmed and extended the earlier observations. She finds 
that the flow changes from steady two-dimensional rolls to another steady 
cellular motion as the first point of bifurcation is passed. 

A similar transition phenomenon has been observed for convection in a porous 
layer by Combarnous & LeFur (1969) and by Buretta & Berman (1973). In the 
experiments of Buretta & Berman, heat-transfer measurements are obtained 
from different porous layers made up of packed glass beads (with 3 , 6  and 14.3mm 
diamekers) in a cylindrical container of small aspect ratio (heightldiameter ranges 
from & t o  t). 

In  figure 2 we have compared all the measurements of the heat transport in 
Buretta & Berman’s experiments in four out of five runst with the theoretical 

The data from one run differed from the other four by about 10 yo. We do not know 
whether the inconsistent data IS real or spurious. 
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upper bound calculated numerically, The agreement between the experiments 
and theory is striking. The data of Combarnous & LeFur also seems to be in good 
agreement with the theory but the published experimental data are plotted on 
such a small scale as to make detailed comparison with theory very difficult. 

The nature of the agreement between theory and experiment with regard to 
the point of bifurcation is of particular interest. In  making this comparison the 
continuity properties of the theoretical heat transport become important. We 
have noted already in (4.2) that 

dR ((We - ( w e y )  - &-  

The slope of the heat-transport curve is directly related to this quantity. At 
the point of bifurcation (where w2 = 8, = 0) it is obviously equal to its value for 
the single-a case. d2R/d,u2 will obviously depend on dw,(x)/d,u and dw,(z)/d,u. 
Figure 3, however, clearly shows that these quantities abruptly change when we 
go from the single-a solution to the two-a solution at  the point of bifurcation. 
Hence, there is expected to be a jump in the second derivative (or curvature) of 
the bounding heat-transport curve at the point of bifurcation. This is not 
inconsistent with our numerical results. 
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Returning now to the experiments, we note that the observed changes in the 
slope of the heat-transport curve are not of sufficient precision t o  establish the 
nature of the discontinuiby at  the point of bifurcation. Indeed, transitions 
associated with secondary bifurcations may, in some cases, have the same conti- 
nuity properties as the bounding heat-transport curve. There are, of course, 
instabilities of a ‘snap through’ type such as is observed in the breakdown of 
laminar pipe flow (cf. Joseph & Sattinger 1972). Such instabilities are usually 
associated with hysteresis phenomena and they would ordinarily lead to actual 
discontinuities in the heat-transport curve rather than to discontinuities in slope. 

It follows, assuming the continuity of slope in Che experiments, that the bifur- 
cation would go undetected for some range of R > R,, and the experimentally 
observed transition value would be too high. In  view of this the values of 280-300 
of Combarnous & LeFur and the value of 245 of Buretta are in good agreement 
with our numerically calculated value R,, = 221.5. 

After having made this case for agreement between theory and experiment, 
we must note that we have been selective in the data displayed in figure 2. In  
figure 8 we have plotted all of the data from three different papers available to us. 
There is considerable uncertainty in this data even when the experiments are 
carefully performed, and no experiment is guaranteed t o  have an error of less 
than I0 yo. It is therefore possible that points lying above the two-a numerical 
upper bound in figure 8 represent spurious observations. 

We turn next to comparison of theory and experiment when R is large. 

8. Asymptotic results for large R 
A well-known dimensional argument which leads to the law Nu cc R* as R -+ co 

in the case of regular convection leads t o  Nu cc R as R + co in the case of porous 
convection. An infinite limiting Rayleigh number can obviously be achieved by 
making d, the plate separation, tend to infinity while AT = T, - T, is kept fixed. 
However, in this case the heat flux (KATId) Nu must be independent of d, being 
the heat flux into a semi-infinite region through a lower heated surface. There- 
fore, the Nusselt number must vary linearly with d. But the Nusselt number 
depends on d only through the Rayleigh number, which also varies linearly wibh d.  
Therefore, Nu must vary linearly with R as R + co. 

The argument just given depends, of course, upon the assumption that Nu 
depends on d only through R and not on other parameters which also depend 
on d. This would be true if the DOB equations were valid in the limit of large R. 
However, we cannot expect these equations to hold when the scale of the motions 
is as small as a typical void in the porous bed. Despite this some of the experi- 
ments (figure 8) do seem to be consistent with the requirements of the dimensional 
arguments in the limit of large R. 

It is appropriate, however, to compare Che prediction of the dimensional 
argument with the variational arguments since these both assume that the DOB 
equations govern the motion when R is large. 

To treat the variational problem at large R (or large p or p )  we followed the 
analysis of Chan (1971) in all essential details. The boundary-layer analysis is 
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0.5 0.6 0.7 0.8 0.9 1.0 

z 

FIGURE 4. The single-a solutions when p = 2000 (R = 207.4). A pronounced boundary- 
layer structure with w,O, % 1 in the interior has not yet, developed. 

0 

z 

FIGURE 5 .  The single-a solutions when p = 6000 (R = 382.1). A boundary-layer structure 
with wlOl w 1 in the interior has developed. The wlOl boundary layer is pushed closer 
to the wall by the overshoot of O1. 
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FIGURE 6. The two-cc solution when p = 8000 ( R  = 428.7). Here the boundary layer is 
such that w0 = w,8,+w,82 N- 1 at  interior points. This boundary-layer structure is 
already fairly well developed. 

- 

N 

i=l 
based on the hypothesis that, when p is large, 2 = wi Bi = 1 everywhere but 

in a small region of the boundary. This is a boundary layer in 2 rather than in 
the separate factors wi and ei. This kind of structure is already evident in figures 
4, 5 and 6. Only the results of this analysis will be given here and we refer the 
reader t o  Gupta's thesis for details. We define FIN] to be the upper bound corre- 
sponding to a solution with N wavenumbers and find that 

and 

where 

and bn+l = 3n-&+t(9P- l( 4/p)1-3-yjz-3 1 -n. 

b! = 1/[2 x 3N- 11 

Putting N = 1, 2 and 3 in (8.1) we get 

F[l] 2 0.1103(RhtR)3, 
3"21 0-2439 x 10-l(RIn: R):, 

PI3] z 0-9370 x 10-2(Rln* R)%. 

We note that F[11 = FC2l at R = R,, z 366.4. 
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(two a) // 

100 200 500 

R 

FIGURE 7. The variation of the optimizing wavenumbers. -, two-a result; - -, continua- 
tion of the single-a solution past the point of bifurcation; __ , calculated from the 
boundary-layer theory. 

The bounding Nusselt number is maximized by the single-a solution when 
R < R,, and by the two-a solution when R > R,,. Recall that the exact value 
of R,, from numerical analysis is R,, = 221.5. An analogous exchange in the 
minimizing properties of the solution occurs at  R,, = 1.188 x 105 and so on. At 
each point of bifurcation a new solution with one more wavenumber maximizes 
Nu.  Finally in the limit N - t w  we find that 

F O 3 I   NU[^! = 0-01601R. (8.6) 
Graphs of equations (8.2)-(8.4) for the two-a solution are shown in figure 7. 

The graphs of (8.5) and (8.6) are shown in figure 8. The following three points 
deserve emphasis. 

(a)  The prediction of the dimensional argument on the slope of the heat- 
transport curve is supported by the result (8.6) of asymptotic analysis of the 
variational problem. 

( b )  Asymptotic results for N = 1 and N = 2 do not compare well quantita- 
tively with the corresponding numerical results even though they become parallel 
on a log-log scale. It would appear from our numerical work that the basic ideas 
of the boundary-layer analysis are a t  least qualitatively correct; however, the 
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FIGURE 8. Compilation of published experimental data for convection in a porous layer 
heated from below. -, two-a upper bound; - -, asymptotic results; 0, Cornbarnous & 
LeFur (1969) ; 0, Elder (1967) ; + , Buretta & Bermttn. Schneider’s (1963) data is like that 
shown but has more scatter in the region below the upper bound. 

apparent discrepancy in the magnitudes of the variation of the parameters with 
R may mean that the boundary-layer analysis is not completely correct. 

( c )  The condition of infinite Prandtl-Darcy number (B-l = co) which is 
explored in this paper leads to results which differ substantially from those which 
hold when this Condition is relaxed. To establish this it suffices t o  draw attention 
to discrepancy in the results of this analysis, where we assume B = 0, and the 
analysis given in BJ, where no restriction on the value of B is imposed. In  the 
analysis given in BJ the successive bifurcations of the Euler equations lead the 
upper bound far away from the data; ultimately, as N --f 00, the bounding curve 
becomes proportional to eR rather than R. 

A similar improvement in the upper bound has been derived by Chan in his 
asymptotic analysis of infinite Prandtl number convection in a fluid layer. 

This paper is based on the Ph.D. thesis of V.P. Gupta at  the University of 
Minnesota. The work was partially supported under the NSF grant GK-12500. 
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